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Highlights  Abstract  

▪ A competitive model for predicting the 

readiness of the maintenance system has been 

developed using the semi-Markov model. 

▪ The method of using the Semi-Markov model 

in a complex system has been presented. 

▪ The method of estimating the parameters of the 

semi-Markov model has been presented in a 

situation where the sojourn time distributions 

in the given state are not identifiable using one 

of the classical distributions. 

▪ Diagnostics and evaluation of a transport 

company in terms of its readiness have been 

made. 

 Modelling the time that the system remains in a given state using 

classical distributions is not always possible. In many cases, empirical 

distributions are multimodal due to the influence of external, hidden 

factors and the selection of the best classical  distributions may lead to 

erroneous results. In the  article the method of diagnosis of influence of 

hidden factors into sojourn time of semi-Markov models was presented. 

In order to capture hidden factors, the authors proposed to model the 

distributions of the sojourn time with a mixture of distributions, which 

is a significant novelty in relation to the studies presented in the 

literature.  Hidden factors directly affect the reliability of technical 

systems. Detecting the existence of these factors enables more accurate 

modeling of system readiness. Paying attention to irregularities caused 

by hidden factors makes it possible to reduce system maintenance costs. 

Such a system model provides complete information and enables a 

reliable assessment of the system readiness and maintenance. 
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1. Introduction 

Maintaining the proper level of readiness and reliability is 

crucial for any operating system [33, 44]. It enables the 

purposeful use of the maintenance potential in the utilization 

subsystem and periodic reconstruction of this potential in the 

renewal subsystem in order to maintain the facility's ability to 

continue operation. This need results from the characteristic 

features of each technical object immersed in any maintenance 

system, which include, first of all, limited usability (limited 

maintenance potential), finite durability and maintenance, 

material and energy, information and other needs [49]. 

Therefore, the renewal process is fundamental in any system 

of operation. It is strongly determined by the adopted 

maintenance strategy [28]. A strategy focused on preventive 

maintenance is popular in this regard, used primarily in 

production systems [37, 72], transport systems [2, 20] or power 

supply systems [42, 23]. The advantage of this method is its 

simplicity, as it only requires precise planning of the 

maintenance schedule [26, 73] without needing specialist 

knowledge or detailed information about the operation of  

a specific facility. It is only necessary to know its life cycle 

(preventive prophylaxis can be based on the passage of  

a specific time or the performance of a specific job), and the 
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potential risk of damage [13]. The maintenance plan therefore 

provides a balance between the risk of failure and the saving of 

maintenance resources and costs [54]. The disadvantage of this 

method is primarily unexpected damage, which can cause 

significant costs, long downtimes and, consequently, delays in 

the implementation of tasks [69, 45]. Therefore, the answer to 

these problems is a predictive strategy [11], aimed at optimal 

use of facilities by eliminating unnecessary periods of 

downtime resulting from repairs or maintenance [62, 8, 35]. 

However, it requires detailed information on the current 

technical condition of the equipment and the implementation of 

preventive measures [77, 55], as it is based on predicting future 

conditions of facilities and taking appropriate repair, 

maintenance and preventive measures in advance. 

Therefore, a preventive strategy requires appropriate 

diagnostic and predictive methods. Popular in this area are 

classic reliability evaluation methods related to the calculation 

of basic indicators such as MTBF (mean time between failures) 

or MTTR (mean time to repair) [31, 50, 22]. More advanced 

tools are also used, including deep learning methods [9, 38, 10, 

53, 77], based on Monte Carlo simulation [46, 21] as well as 

kriging and first-order reliability [48]. Perti nets [17], Fault tree 

analysis (FTA) [34], and the load duration distribution method 

(LDD) [47] are also used. Particularly popular are also time 

series methods, including e.g. ARIMA class models [19, 27, 24, 

32, 65, 67]. 

However, in time series, the interval between observations 

is predetermined, therefore modelling the operational states of 

the object using time series is not a rational operation [7] 

because they occur at different moments in time. For diagnostics 

and modelling, the Markov and Semi-Markov models are most 

often used, where the sojourn time in the given  state is a random 

variable with a specific distribution. 

The literature on the application of Markov and Semi-

Markov models is extensive. It concerns mainly the evaluation 

of readiness and reliability of machines and devices in transport 

engineering or logistics [4, 25, 70]. The authors most often use 

the theory of one-dimensional Markov and semi-Markov 

processes in relation to single elements of complex technical 

objects. An example is the Markov model-based fault diagnosis 

of wind power converter systems [30], resilience assessment for 

TLP under mooring failure, the quantitative evaluation of 

system reliability of flux switching permanent magnet machines 

(FSPM) [39] or the modular multi-level converter (MMC) [75]. 

There are definitely fewer works on complex technical objects. 

One can quote, for example, [36] where a method for assessing 

the reliability of a wind turbine based on the Hidden-Markov 

model was proposed, where model of airborne redundant 

systems operating with faults is developed, or [41] where  

a method for predicting failure of virtual machines as an object 

affecting the reliability of cloud platforms based on the 

AdaBoost-Hidden Markov model was presented. In [3], on the 

other hand, the reliability of distribution systems was evaluated, 

taking into account the spatial and temporal distribution of 

electric vehicles. Studies of complex systems are not popular, 

however, comprehensive analyses are extremely important, as 

not only do they allow probing about the reliability of the 

system as a whole, but also allow to formulate and optimize 

maintenance policy, which is presented in the publication by 

Chen and Trivedi [12], Lisnianski and Frankel [43] or 

Fallahnezhad et al. [18]. 

To describe a system of operation one must analyze both 

transition between states in which the system remain (the 

transition matrix) as well as the time spent by the system in 

these states (the sojourn time distribution i.e. the time interval 

between adjacent moments when the stochastic system changes 

state). For this purpose, we use semi-Markov model in our 

research. 

It is also worth emphasizing that the use of the Markov, 

Semi-Markov or Hidden-Markov model requires the fulfilment 

of the assumptions authorizing their use. This is noted, for 

example, in [4, 76, 64, 15]. These include, first of all, the 

fulfilment of the Markov property. Only when sequences of 

random variables satisfy the Markov property can the prediction 

be accurate [76]. Therefore, it is necessary to test the 

randomness of the sequence of collected statistical data, as is 

done, for example, by [71, 61]. The second, important 

requirement is the assumption regarding the form of distribution 

of sojourn time in the given states, also emphasized in the 

literature [40, 53]. The authors use parametric Weibull [68, 15], 

Poisson [40, 16] and double exponential distributions [60]. 

Evaluation of the consistency of the distribution of the analysed 

variable affects the selection of a specific model. For 

exponential distributions it is a Markov model, and for other 
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parametric (non-exponential) distributions it is a semi-Markov 

model. However, it is not always possible to model the time of 

the system's remaining in a given state using classical 

distributions. Making the assumption then about the selection of 

the best of the classical theoretical distributions may be 

burdened with a large error and lead to erroneous results, 

because there are some latent (or external) factors (occurrences, 

events, incidents) which directly influence sojourn time (e.g., 

the average time of vehicle service by different people varies). 

This article answers the problem diagnosed this way. 

In order to capture hidden factors, the authors proposed to 

model the distributions of the sojourn time with a mixture of 

distributions, which is a significant novelty in relation to the 

studies presented in the literature. The presence of a mixture of 

decomposition shows that there are additional external factors 

affecting the analysed state of the object/system, which in this 

case are taken into account in estimating the level of readiness 

or evaluating the average sojourn time in this state. Such  

a system model provides complete information and enables  

a reliable assessment of the system. 

The article consists of four sections. The first, the 

introduction, contains a description of the problem of modeling 

the readiness of the maintenance system. Next section is 

devoted to the presentation of the modelling methods used in 

the paper. We present the necessary concepts of Markov and 

semi-Markov processes (basic definitions, identification of 

semi-Markov processes, estimation of transition probability 

matrix for Markov process, Markov property test, estimation of 

sojourn time of system in state) and a method of modelling the 

sojourn time. Section Results contains the research results of 

modelling the maintenance system of the police cars performing 

patrols and interventions in Warsaw, Poland. The last section 

contains a summary and conclusions. 

2. Materials and Methods 

2.1. Markov processes 

Let (𝛺, 𝐹, 𝑃) be a probabilistic space, ℕ be the set of natural 

numbers, ℕ0 = ℕ ∪ {0}, ℝ denotes the set of real numbers and 

𝑆 be the states space of the analysed system (object, 

phenomenon). For the transport system we usually assume, that 

the set 𝑆 is finite or countable. 

Definition 1 A sequence of random variables {𝑋𝑡}𝑡∈𝑇, 

𝑋𝑡: 𝛺 → 𝑆 for any 𝑡 ∈ 𝑇 ⊂ ℝ is called a stochastic process [29, 

57]. 

If the set of moments 𝑇 is finite or countable then the 

stochastic process is said to be in discrete time (or discrete time 

stochastic process - DTSP). If 𝑇 is uncountable (some subset of 

set of real numbers), then time is said to be continuous and 

process is called continuous time stochastic process (CTSP) [29, 

57]. 

We assume that the set of states 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑘} (set of 

possible realisations of the stochastic process {𝑋𝑡𝑛
}

𝑡𝑛∈𝑇
) is finite 

and 𝑘 ∈ ℕ , 2 ≤ 𝑘 < ∞. At any moment 𝑡 ∈ 𝑇 the system can 

take one of possible realizations and 𝑋𝑡(𝜔) = 𝑥𝑡 ∈ 𝑆. Denote 

𝑃(𝑋𝑡 = 𝑠𝑖) = 𝑝𝑖(𝑡) ≥ 0, where ∑ 𝑝𝑖
𝑘
𝑖=1 (𝑡) = 1, the probability 

that system is in a state 𝑠𝑖 ∈ 𝑆 , 1 ≤ 𝑖 ≤ 𝑘 at the moment 𝑡 ∈ 𝑇. 

Definition 2 Continuous-time stochastic processes {𝑋𝑡}𝑡∈𝑇 

is called a Markov process ([29, 57]) if for any 𝑛 ∈ ℕ, moments 

𝑡1, 𝑡2, … , 𝑡𝑛 ∈ 𝑇 satisfying the condition 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 , and 

states 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝑆, the following property is satisfied: 

𝑃(𝑋𝑡𝑛
= 𝑥𝑛|𝑋𝑡𝑛−1

= 𝑥𝑛−1, 𝑋𝑡𝑛−2
= 𝑥𝑛−2, … , 𝑋𝑡1

= 𝑥1) 

=  𝑃(𝑋𝑡𝑛
= 𝑥𝑛|𝑋𝑡𝑛−1

= 𝑥𝑛−1)                (1) 

According to the definition of the Markov process, it follows 

that the conditional distribution of the random variable 𝑋𝑡𝑛
 for 

a given realization sequence {𝑥𝑡𝑗
}

1≤𝑗≤𝑛−1
 depends only on the 

last known 𝑥𝑡𝑛−1
 system state. The property given by the 

formula (1) is called Markov property or memoryless property, 

since realization of the stochastic process at the moment 𝑡𝑛 

depends only on the state at the moment 𝑡𝑛−1 but does not 

depend on previous states (i.e. states at the moments 

𝑡𝑛−2, … , 𝑡1). For continuous time Markov process it is assumed 

that the sojourn time 𝜏𝑛 = 𝑡𝑛 − 𝑡𝑛−1 is exponentially 

distributed. 

In the paper we analyze discrete time stochastic process. The 

process {𝑋𝑡}𝑡∈𝑇 at the moment 𝑡 = 𝑡𝑛 changes the state and 

takes the realization 𝑠𝑖 ∈ 𝑆 and remains in this state until the 

next transition moment 𝑡𝑛+1, i.e. 𝑋𝑡 = 𝑠𝑖  for 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1) and 

𝑋𝑡𝑛+1
= 𝑠𝑗 ≠ 𝑠𝑖 . In other words, at each moment 𝑡𝑛+1, 𝑛 ∈ ℕ 

we observe the jump from the state 𝑠𝑖 to different state 𝑠𝑗. From 

above, we take 𝑋𝑡𝑛
=
△

𝑋𝑛 for any 𝑛 ∈ ℕ and we accept 𝑇 = ℕ. 

Definition 3 Discrete-time stochastic processes {𝑋𝑡}𝑡∈ℕ is 
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called a Markov chain ([29, 57]), if for any 𝑛 ∈ ℕ and states 

𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝑆 the following property is satisfied 

𝑃(𝑋𝑛 = 𝑥𝑛|𝑋𝑛−1 = 𝑥𝑛−1, 𝑋𝑛−2 = 𝑥𝑛−2, … , 𝑋1 = 𝑥1)

= 𝑃(𝑋𝑡𝑛
= 𝑥𝑛|𝑋𝑛−1 = 𝑥𝑛−1).  

For a heterogeneous Markov chain {𝑋𝑛}𝑛∈𝑁 the transition 

probability from 𝑠𝑖 state at the moment 𝑛 to the state 𝑠𝑗 at 

moment 𝑛 + 1 

 𝑃(𝑋𝑛+1 = 𝑠𝑗|𝑋𝑛 = 𝑠𝑖) = 𝑝𝑖𝑗(𝑛)                            (2) 

depends on the moment 𝑛, 1 ≤ 𝑖, 𝑗 ≤ 𝑘. The conditional 

distribution of stochastic process depends on the moment in 

which the process is observed and current state, regardless of 

previous states. The matrix 𝑃(𝑛) = [𝑝𝑖𝑗(𝑛)]
1≤𝑖,𝑗≤𝑘

 satisfying 

the condition ∑ 𝑝𝑖𝑗
𝑘
𝑗=1 (𝑛) = 1 for 𝑛 ∈ ℕ and 𝑝𝑖𝑖 = 0, 1 ≤ 𝑖 ≤

𝑘 is called the (one step) transition probability matrix of Markov 

chain from 𝑛 moment to 𝑛 + 1 moment [29, 57]. 

If the transition probabilities 𝑝𝑖𝑗(𝑛) do not depend on the 

moment 𝑛 ∈ ℕ (ie. 𝑝𝑖𝑗(𝑛) = 𝑝𝑖𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 𝑘 and any 

moment 𝑛 ∈ ℕ) the sequence {𝑋𝑛}𝑛∈ℕ is called a homogeneous 

Markov chain. For homogeneous Markov chain we denote one 

step transition probability matrix as 𝑃 = [𝑝𝑖𝑗]
1≤𝑖,𝑗≤𝑘

, where 

∑ 𝑝𝑖𝑗
𝑘
𝑗=1 = 1 for 1 ≤ 𝑖 ≤ 𝑘 and 𝑝𝑖𝑖 = 0. For a homogeneous 

Markov chain, the transition probability from state 𝑠𝑖 at the 

moment 𝑛 to state 𝑠𝑗 at the moment 𝑛 + 𝑚 

  𝑃(𝑋𝑛+𝑚 = 𝑠𝑗|𝑋𝑛 = 𝑠𝑖) = 𝑝𝑖𝑗
(𝑚)

,           (3) 

where [𝑝𝑖𝑗
(𝑚)

]
1≤𝑖,𝑗≤𝑘

= 𝑃𝑚 is the matrix of transition probability 

in 𝑚 steps and 𝑚 ∈ ℕ. 

Definition 4 If stochastic process {𝑋𝑛}𝑛∈ℕ is the 

homogeneous Markov chain and there is a distribution 𝜋 =

(𝜋1, 𝜋2, … , 𝜋𝑘), where 𝜋𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑘, ∑ 𝜋𝑖
𝑘
𝑖=1 = 1 and 

                                  𝜋𝑃 = 𝜋,                                        (4) 

then the distribution 𝜋 is called the stationary distribution of the 

homogeneous Markov chain [29, 57]. 

From (3) - (4) we see that if at certain moment the system 

has a stationary distribution 𝜋, then after 𝑚 ∈ ℕ steps the 

distribution of states is this same. An important role in the 

studying of Markov chains is played by its limit properties, 

especially the boundary distributions 𝑝𝑗(𝑛) and 𝑝𝑖𝑗
(𝑛)

, 𝑛 → ∞. 

State 𝑠𝑖 is said to be 𝑑 periodic if 𝑝𝑖𝑖
(𝑛)

= 0 when 𝑛 is not 

divisible by 𝑑, and  𝑑 is the largest integer with this property. 

State 𝑠𝑖 is recurrent if the process starting from this state and 

returns to this same state in finite time. Aperiodic and recurrent 

state is called ergodic [29, 57]. The probabilistic properties of 

the homogeneous Markov chain after a long time (𝑚 transitions, 

𝑚 → ∞) are presented in the following theorem. 

Theorem 1 ([29]) Let {𝑋𝑛}𝑛∈ℕ be a homogeneous  Markov 

chain with ergodic states and transition probability matrix 𝑃 ∈

[0,1]𝑘×𝑘, then:` 

a) there is a state probability vector 𝜋 = (𝜋1, 𝜋2, … , 𝜋𝑘) such 

that 𝜋𝑖 ≥ 0 for 1 ≤ 𝑖 ≤ 𝑘 and ∑ 𝜋𝑗
𝑘
𝑗=1 = 1; 

b) 𝜋𝑗 = lim𝑚→∞𝑝𝑖𝑗
(𝑚)

 for any 1 ≤ 𝑖, 𝑗 ≤ 𝑘, where 

[𝑝𝑖𝑗
(𝑚)

]
1≤𝑖,𝑗≤𝑘

= 𝑃𝑚, 𝑚 ∈ ℕ; 

c) the stationary distribution 𝜋 is the solution of equation (4). 

The stationary property means that the homogeneous Markov 

chain being in any state 𝑠𝑗 after a large number of transitions 

(i.e. 𝑚 → ∞) reaches a stationary distribution 𝜋 independent of 

the initial state. To determine the stationary distribution we 

usually apply the spectral expansion method, see e.g. [29]. 

2.2. Semi-Markov processes 

Below we present an extension of discrete time Markov process 

to its continuous counterpart called semi-Markov process 

(SMP) [29]. On the one hand we describe the system behavior 

like a Markov process, on the other we analyze the sojourn time 

of states of the system. 

Let {𝑋𝑡}𝑡≥0 be a right-continuous, piecewise constant 

process, where 𝑋𝑡 = 𝑋𝑡𝑛
(𝜔) for 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1) and 

 𝑋𝑡𝑛
(𝜔): 𝛺 → 𝑆 at transition moments 𝑡1, 𝑡2, …, 𝑛 ∈ ℕ. The 

value 𝜏𝑛 = 𝑡𝑛 − 𝑡𝑛−1 for 𝑛 ∈ ℕ denotes n-th sojourn time and 

we assume 𝑡0 = 0. 

Definition 5 (Semi-Markov process) A right-continuous, 

piecewise constant process {𝑋𝑡}𝑡≥0 is semi-Markov process, if: 

1. the sequence {𝑋𝑡𝑛
}

𝑛∈ℕ0
 is homogeneous Markov chain 

with transition probability matrix 𝑃 = [𝑝𝑖𝑗]
1≤𝑖,𝑗≤𝑘

, where 𝑝𝑖𝑗 =

𝑃(𝑋𝑡𝑛
= 𝑠𝑗|𝑋𝑡𝑛−1

= 𝑠𝑖) is the probability of transition from 

state 𝑠𝑖 to state 𝑠𝑗 at time 𝑡𝑛, 𝑛 ∈ ℕ and ∑ 𝑝𝑖𝑗
𝑘
𝑗=1 = 1; 

2. the sojourn (transition) time distribution between states 

depends on current state and future state (after observing the 
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jump), thus the distribution matrix of sojourn times  

𝐹(t) = [𝐹𝑖𝑗(𝑡)]
1≤𝑖,𝑗≤𝑘

 

where 𝐹𝑖𝑗(𝑡) = 𝑃(𝜏𝑛 ≤ 𝑡|𝑋𝑡𝑛−1
= 𝑠𝑖 , 𝑋𝑡𝑛

= 𝑠𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑘 is 

a distribution function of n-th sojourn time given that the system 

obtained the state 𝑠𝑖 at moment 𝑡𝑛−1 and shall jump to state 𝑠𝑗 

at moment 𝑡𝑛 = 𝑡𝑛−1 + 𝜏𝑛. 

Semi-Markov process is characterized as embedded Markov 

chain {𝑋𝑡𝑛
}

𝑛∈ℕ0
 with probability transition matrix 𝑃 and 

corresponding to it the sojourn time process {𝜏𝑛}𝑛∈ℕ. Thus the 

semi-Markov process we present as pair process {(𝑋𝑛, 𝑡𝑛)}𝑛∈ℕ0
, 

𝑋𝑡𝑛
= 𝑋𝑛 for 𝑛 ∈ ℕ0 and 𝑡𝑛 = 𝑡0 + ∑ 𝜏𝑗

𝑛
𝑗=1 . 

Below we will estimate distribution of sojourn time that the 

system at any moment 𝑡𝑛−1 take the state 𝑠𝑖 and remains in this 

state until the next state change. Denote as 𝜏𝑖 the random 

variable of sojourn time in state 𝑠𝑖. Thus the conditional 

distribution of sojourn time is the probability that for any 𝑛 ∈ ℕ 

the system remains during period 𝜏𝑛 in the state 𝑠𝑖, 1 ≤ 𝑖 ≤ 𝑘 

which has been achieved at time 𝑡𝑛−1 as follows 

𝐹𝑖(𝑡) = 𝑃(𝜏𝑖 < 𝑡) = 𝑃(𝜏𝑛 < 𝑡|𝑋𝑛−1 = 𝑠𝑖)       

=
𝑃(𝜏𝑛 < 𝑡, 𝑋𝑛−1 = 𝑠𝑖)

𝑃(𝑋𝑛−1 = 𝑠𝑖)

=
1

𝑃(𝑋𝑛−1 = 𝑠𝑖)
∑ 𝑃(𝜏𝑛 < 𝑡, 𝑋𝑛 = 𝑠𝑗 , 𝑋𝑛−1 = 𝑠𝑖)

𝑘

𝑗=1

= ∑
𝑃(𝜏𝑛 < 𝑡, 𝑋𝑛 = 𝑠𝑗 , 𝑋𝑛−1 = 𝑠𝑖)𝑃(𝑋𝑛 = 𝑠𝑗 , 𝑋𝑛−1 = 𝑠𝑖)

𝑃(𝑋𝑛−1 = 𝑠𝑖)𝑃(𝑋𝑛 = 𝑠𝑗 , 𝑋𝑛−1 = 𝑠𝑖)

𝑘

𝑗=1

= ∑ 𝑃(𝜏𝑛 < 𝑡|𝑋𝑛 = 𝑠𝑗 , 𝑋𝑛−1 = 𝑠𝑖)𝑃(𝑋𝑛 = 𝑠𝑗|𝑋𝑛−1 = 𝑠𝑖)
𝑘

𝑗=1

= ∑ 𝐹𝑖𝑗

𝑘

𝑗=1
(𝑡)𝑃𝑖𝑗 .                                                                   (5) 

Let {𝑋𝑡}𝑡≥0 be a semi-Markov process with embedded 

homogeneous Markov chain {𝑋𝑛}𝑛∈ℕ𝟘
 with stationary 

distribution 𝜋 = (𝜋1, 𝜋2, … , 𝜋𝑘) (corresponding to transition 

probability matrix 𝑃 and satisfying the property (4)) and 

sequence of conditional distributions of sojourn time 

{𝐹𝑖(𝑡)}1≤𝑖≤𝑘. The stationary distribution 𝛱 = (𝛱1 , 𝛱2, … , 𝛱𝑘), 

∑ 𝛱𝑖
𝑘
𝑖=1 = 1, and 𝛱𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑘 of semi Markov process 

{𝑋𝑡}𝑡≥0 depends on both stationary distribution of embedded 

Markov chain and conditional distribution of sojourn time [29]. 

Let 𝑍𝑖 = {𝑗: 𝑋𝑗(𝜔) = 𝑠𝑖}, then 𝑛𝑖 = #𝑍𝑖 denotes the number of 

jumps when the embedded Markov chain takes the state 𝑠𝑖 over 

period [0, 𝑡𝑁+1), 𝑁 → ∞. From above, the value 

∑ (𝑡𝑛+1 − 𝑡𝑛)
𝑛∈𝑍𝑖

= ∑ 𝜏𝑛
𝑛∈𝑍𝑖

 

is a sojourn time in state 𝑠𝑖 by semi-Markov process over period 

[0, 𝑡𝑁+1).Then the fraction of time the process spent in state 𝑠𝑖 

one can estimate as follows 

𝜂𝑖(𝑁) =
∑ 𝜏𝑛𝑛∈𝑍𝑖

∑ ∑ 𝜏𝑛𝑛∈𝑍𝑗

𝑘
𝑗=1

=

𝑛𝑖

𝑁
1
𝑛𝑖

∑ 𝜏𝑛𝑛∈𝑍𝑖

∑
𝑛𝑗

𝑁
𝑘
𝑗=1

1
𝑛𝑗

∑ 𝜏𝑛𝑛∈𝑍𝑗

.         (6) 

From the strong law of large number we have 

1

𝑛𝑖

∑ 𝜏𝑛
𝑛∈𝑍𝑖

→
𝑎.𝑠.

𝐸𝜏𝑖  𝑎𝑠  𝑁 → ∞               (7) 

and 

𝑛𝑖

𝑁
→
𝑎.𝑠.

𝜋𝑖  𝑎𝑠  𝑁 → ∞.                         (8) 

According to definition of fraction time (6) we have 

𝜂𝑖(𝑁) →
𝑎.𝑠.

𝛱𝑖  as  𝑁 → ∞.                             (9) 

Finally, substituting (7) - (9) into (6) the stationary distribution 

of semi-Markov process ([29]) is given by 

𝛱𝑖 =
𝜋𝑖𝐸𝜏𝑖

∑ 𝜋𝑗
𝑘
𝑗=1 𝐸𝜏𝑗

                                              (10) 

for 1 ≤ 𝑖 ≤ 𝑘. 

According to definition 5 the identification of semi-Markov 

model consists of, on the one hand, the estimation of transition 

probability matrix of embedded homogeneous Markov chain 

and, on the other hand, the determination of sojourn time 

distributions between states. After estimation of transition 

probability matrix we can determine the stationary distribution 

of Markov chain. From (5) we can estimate the sojourn time 

distribution in state 𝑠𝑖 and therefore using the formula (10) we 

determine the stationary distribution of semi-Markov process. 

From (5) the sojourn time distribution in state 𝑠𝑖 is defined 

as linear combination of sojourn time distributions between 

state 𝑠𝑖 and others. But when we analyse the probability density 

function (or histogram) of sojourn time in the state 𝑠𝑖 we can 

observe one or several peaks. These peaks correspond to 

“latent” factors that can involve sojourn time. The number of 

peaks may be different from the number of states to which the 

system can jump (arrive) from the state 𝑠𝑖. In the following, we 

will present a way to determine the number of possible “latent” 

factors which involve sojourn time based on kernel density 

estimation. 
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2.3. Estimation of transition probability matrix 

Let the sequence {𝑥𝑡}0≤𝑡≤𝑛 denotes realization of the Markov 

chain and 𝑥𝑡 ∈ 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑘} for 0 ≤ 𝑡 ≤ 𝑛. To estimate 

the transition probability matrix for the Markov chain we 

determine the values 𝑛𝑖 = #{𝑡: 𝑥𝑡 = 𝑠𝑖 , 0 ≤ 𝑡 ≤ 𝑛}, which is the 

number of moments when the system remained in the state 𝑠𝑖 

for 1 ≤ 𝑖 ≤ 𝑘, and ∑ 𝑛𝑖
𝑘
𝑖=1 = 𝑛. The values 𝑛𝑖𝑗 = #{𝑡: 𝑥𝑡 =

𝑠𝑖 , 𝑥𝑡+1 = 𝑠𝑗 , 0 ≤ 𝑡 ≤ 𝑛 − 1} means the number of transitions 

from state 𝑠𝑖 to state 𝑠𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑘 and ∑ 𝑛𝑖𝑗
𝑘
𝑗=1 = 𝑛𝑖. We then 

determine the estimator of transition probability from state 𝑠𝑖 to 

state 𝑠𝑗 as �̂�𝑖𝑗 = 𝑛𝑖𝑗/𝑛𝑖 for 1 ≤ 𝑖, 𝑗 ≤ 𝑘 and the estimated 

transition probability matrix is equal 𝑃 = [�̂�𝑖𝑗]
1≤𝑖,𝑗≤𝑘

. 

2.4. Markov property test 

At the significance level 𝛼 ∈ (0,1) we formulate a null 

hypothesis: 

𝐻0 : 𝑃(𝑋𝑡 = 𝑥|𝑋𝑡−1 = 𝑦, 𝑋𝑡−2 = 𝑧) = 𝑃(𝑋𝑡 = 𝑥|𝑋𝑡−1 = 𝑦) 

(the chain {𝑋𝑡}𝑡∈ℕ has a Markov property) 

and an alternative hypothesis: 

𝐻1 : 𝑃(𝑋𝑡 = 𝑥|𝑋𝑡−1 = 𝑦, 𝑋𝑡−2 = 𝑧) ≠ 𝑃(𝑋𝑡 = 𝑥|𝑋𝑡−1 = 𝑦) 

(the chain {𝑋𝑡}𝑡∈ℕ does not satisfy Markov property), where 

𝑥, 𝑦, 𝑧 ∈ 𝑆. 

To verify the Markov property we apply the 𝜒2 test ([65]). 

The test statistic is given by 

𝑉 = ∑
(𝑛𝑖𝑗𝑙 − 𝑛𝑖𝑗�̂�𝑗𝑙)

2

𝑛𝑖𝑗�̂�𝑗𝑙

𝑘

𝑖,𝑗,𝑙=1,𝑛𝑖𝑗≠0,𝑛𝑗𝑙≠0

                   (11) 

and has a 𝜒2 distribution with 𝑘2(𝑘 − 1) degrees of freedom 

and denotes differences between 𝑃(𝑋𝑡 = 𝑥|𝑋𝑡−1 = 𝑦) and  

𝑃(𝑋𝑡 = 𝑥|𝑋𝑡−1 = 𝑦, 𝑋𝑡−2 = 𝑧) for states 𝑥, 𝑦, 𝑧 ∈ 𝑆. Followed 

by we determine the probability value (p-value, the probability 

of obtaining test results, [29]) 

𝑝𝑣𝑎𝑙 = ∫
𝑥𝑚/2−1𝑒−𝑥/2

2𝑚/2𝛤(𝑚/2)

∞

𝑉

𝑑𝑥                            (12) 

where 𝑚 = 𝑘2(𝑘 − 1) and 𝛤(⋅) is the gamma function. If 

𝑝𝑣𝑎𝑙 > 𝛼 then at significance level 𝛼 there are no grounds for 

rejecting the null hypothesis (we assume that the sequence 

{𝑥𝑡}0≤𝑡≤𝑛 satisfies Markov property) otherwise we reject the 

null hypothesis in favour of the alternative hypothesis (we 

accept that the sequence does not have Markov property). 

2.5. Estimation of sojourn time of system in state 

Our method of determination of the probability density function 

(PDE) estimates of sojourn time in each state was carried out in 

two steps. In the first step, kernel density estimation (KDE, [6, 

51) for the unknown density function 𝑓 was determined. The 

aforementioned method is one of the nonparametric methods 

and uses all points of the random sample. It involves 

“smoothing” the histogram and results in a continuous density 

function 𝑓 being an approximation of 𝑓. More precisely, let 𝑋 

be a random variable, and let {𝑥1, 𝑥2, . . . , 𝑥𝑛} be its realizations. 

The kernel density estimator (KDE) of 𝑓(𝑡) is a PDE 𝑓(𝑡) 

having the form 

𝑓(𝑡) =
1

𝑛
∑ 𝐾

𝑛

𝑘=1
(𝑥𝑖 , 𝑡), 

where 𝐾(𝑥, 𝑡), 𝑥 ∈ {𝑥1, 𝑥2, . . . , 𝑥𝑛} is a kernel function, being 

bounded, non negative for all 𝑥, 𝑡 ∈ ℝ and ∫ 𝐾
+∞

−∞
(𝑥, 𝑡)𝑑𝑡 = 1 

for any 𝑥 ∈ ℝ. The kernel 𝐾 can be a symmetric or asymmetric 

function with respect to 𝑥. In the case of a symmetric kernel, it 

can be written in the form 

𝐾(𝑥, 𝑡) =
1

ℎ
𝐾 (

𝑡 − 𝑥

ℎ
) 

where the parameter ℎ, called bandwidth, is responsible for the 

degree of smoothing. The most commonly chosen symmetric 

kernels are: the Gaussian, the rectangular, the triangular or 

Epanechnikov kernel. To determine KDE of sojourn time, the 

stats::density function of the R language was used, together with 

Gaussian kernel and ‘rule of thumb’ due to Silverman ([66]) for 

choosing the bandwidth. Because the KDE is ‘identical’ to the 

data sample, in the second step, having 𝑓(𝑡) i.e. the KDE of 

𝑓(𝑡), a parametric PDE from a given family was fitted. 

Observing the curve of the kernel density estimator, we see 

that the curve arises as a mixture of arbitrary densities. In many 

cases, the hidden factors influence sojourn time. In this case, 

modelling the sojourn time distribution as a specified 

distribution does not make sense. The best results we obtain for 

the sojourn time density being a family of probability 

distribution functions (PDFs) having the form of convex 

combination of several densities (hereinafter referred to as a 

mixture of densities) from a given family i.e. 

𝑔(𝑡, 𝑐, 𝛼, 𝛽) = ∑ 𝑐𝑗

𝑚

𝑗=1
𝑓𝑑(𝑡, 𝛼𝑗 , 𝛽𝑗),                     (13) 
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where 𝑐𝑗 ≥ 0 for 𝑗 = 1,2, . . . , 𝑚, ∑ 𝑐𝑗
𝑚
𝑗=1 = 1 and 

 𝛼 = (𝛼1, 𝛼2, … , 𝛼𝑚), 𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑚). The number 𝑚 in 

formula (13) is equal to the number of peaks observed in curve 

of the kernel density estimator 𝑓(𝑡), 𝑡 > 0. We consider the 

following families of probability density functions ([29]) for 

𝑡 > 0, 𝑑 ∈ {𝑊, 𝐿, 𝐺} } forming the mixture (a convex 

combination (13)): 

the random variable 𝜏 has Weibull distribution, then density 

is given as follows 

𝑓𝑊(𝑡, 𝑎, 𝑏) =
𝑎

𝑏
(

𝑡

𝑏
)

𝑎−1

𝑒−(
𝑡
𝑏

)
𝑎

 

with the shape 𝑎 > 0 and scale 𝑏 > 0 parameters, and the mean 

value is equal 

𝐸𝜏 = 𝑏𝛤 (1 +
1

𝑎
), 

the random variable 𝜏 has log-normal distribution, then 

density is given as follows 

𝑓𝐿(𝑡, 𝑎, 𝑏) =
1

√2𝜋𝑏𝑡
𝑒

−
(ln𝑡−𝑎)2

2𝑏2  

with the mean 𝑎 > 0 and the standard deviation 𝑏 > 0 and the 

mean value is equal 

𝐸𝜏 = 𝑒𝑥𝑝 (𝑎 +
𝑏2

2
), 

the random variable 𝜏 has gamma distribution, then density 

is given by the formula 

𝑓𝐺(𝑡, 𝑎, 𝑏) =
1

𝑏𝑎𝛤(𝑎)
𝑡𝑎−1𝑒−

𝑡
𝑏 

with the shape 𝑎 > 0, scale 𝑏 > 0 parameters, 𝛤(⋅) is the 

gamma function and the mean value is equal 

𝐸𝜏 = 𝑎𝑏. 

Using the least square method ([6, 27, 24, 65]) we estimate 

the unknown parameters 𝛼 = (𝛼1, 𝛼2, … , 𝛼𝑚), 

 𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑚) of mixture of the densities (13) i.e. we 

solve the task 

𝑚𝑖𝑛
𝑐,𝛼,𝛽

∑ (𝑓(𝑥𝑖) − 𝑔(𝑥𝑖 , 𝑐, 𝛼, 𝛽))
2

𝑛

𝑖=1

,                       (14) 

where {𝑥𝑖}1≤𝑖≤𝑛 is the sequence of realizations of random 

variable 𝑋. 

3. Results 

The area that has been selected for research is the maintenance 

system, in which the readiness of objects to perform tasks is one 

of the dominant assessment parameters. Such systems include, 

in particular, state services such as the fire brigade, the police or 

the armed forces. In this case, police cars were analysed. The 

subject of the study were cars performing patrol and 

intervention tasks in the capital city of Poland (Warsaw). The 

analysis is presented for a selected passenger car. The source 

database was the documentation of the use of police cars 

regarding police patrols and registers of technical services and 

repairs. This made it possible to distinguish the following 

operational states, in the analyzed sequence:  

1. Current Repair (CR) - a car damaged as a result of a 

breakdown, fault, or involved in a collision event, as a 

result of which it is unable to perform the task and 

awaits current / post-accident repair. 

2. Repair (Rp) - stoppage in repair. 

3. Daily Maintenance 1 (DM1) - daily maintenance is 

performed to the full extent in the place of permanent 

or periodic storage of transport equipment, which 

involves checking the transport equipment, its 

technical efficiency and technical condition of its 

assemblies and subassemblies on the day of operation, 

with particular emphasis on systems that affect driving 

safety. 

4. Daily Maintenance 2 (DM2) - daily maintenance 

performed to a limited extent, usually after completing 

the task when patrol activities are completed and the 

vehicle is parked in the garage. 

5. Stand-by (S) – duty stand-by, technically efficient car 

is parked and ready to carry out the task. 

6. Deployment (D) – implementation of the patrol task. 

7. Refueling (Rf) – refueling the vehicle. 

8. Vehicle Inspection (VI) - technical inspections, in 

accordance with Polish law, in the case of a new car 

purchased in a showroom, must be performed within 3 

years from the date of first registration. The second 

inspection should be carried out no later than 2 years 

after the first one, and the next one every year and the 

periodic service is performed after the car reaches the 

inter-service interval or before the winter or summer 

period. 

The table below (tab. 1) presents the transition probability 

matrix 𝑃. 
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Table 1. The transition probability matrix of Markov chain. 

 CR DM1 DM2 D Rf Rp S VI 

CR 0.0000 0.0000 0.0167 0.0000 0.0000 0.8333 0.1500 0.0000 

DM1 0.0011 0.0000 0.0000 0.9473 0.0263 0.0000 0.0252 0.0000 

DM2 0.0095 0.0284 0.0000 0.0000 0.0000 0.0000 0.9621 0.0000 

D 0.0027 0.0108 0.5609 0.0000 0.2092 0.0000 0.2164 0.0000 

Rf 0.0000 0.0000 0.0471 0.9333 0.0000 0.0000 0.0196 0.0000 

Rp 0.8772 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1228 

S 0.0000 0.9450 0.0000 0.0494 0.0000 0.0000 0.0000 0.0056 

VI 0.0000 0.0000 0.0000 0.0000 0.0000 0.5833 0.4167 0.0000 

The highest values of transition probabilities were achieved 

for relations with daily service (DM1 and DM2). This is due to 

the fact that it is an activity partially determined by the 

instructions in force in most state structures in order to ensure 

the desired efficiency and readiness of the technical equipment 

used. It should be carried out each time before commencing  

a given task - hence the high value of the probability of 

transition from the state DM1 to D (0.94), and also after its 

completion, when the car is parked in the garage - hence the 

high value of the probability of transition from the state DM2 to 

the state S (0.96) and in the opposite direction from state S to 

DM1 (0.94). Refuelling the vehicle before carrying out patrols 

is expressed by a high probability of transition from Rf to D 

(0.93). 

Fig. 1 presents a graphical representation of the transition 

probability matrix 

 

Figure 1. The interstate transitions graph of Markov chain. 

In our case, the value of the statistic (11) is equal to 283.88. 

The statistic has a 𝜒2 distribution with 448 degrees of freedom. 

From (11) the test probability is equal 1. Therefore, at the 

significance level of 0.05, there are no grounds to reject the null 

hypothesis, and therefore we assume that the analyzed sequence 

of states satisfies the Markov property. 

For each state, the sojourn time distributions were estimated 

and fitted using a mixture of densities by solving the task (14). 

The values of objective function (Sum of Squared Errors) for 

each fitting are included in Table 9. For some states, the 

existence of hidden factors affecting the length of stay is clearly 

visible. The existence of multimodality in empirical 

distributions (and thus hidden factors) may be caused by the 

personality features of people operating motor vehicles. Real 

sojourn times for each state were measured in seconds, but in 

fitting process we used logarithmic scale for these times. 

Starting with the Vehicle inspection state, we notice (fig. 1) 

that the kernel density estimator has two peaks. For this reason, 

the combination of 2 densities were fitted. The results of fitting 

is shown on fig. 2 and related coefficients of convex 

combination and parameters of fitted distributions are given in 

the tab. 2 i.e. Weibull 1 and Weibull 2 rows contain coefficients 

of convex combination and parameters of 2 terms being Weibull 

distributions (similarly for log-normal and gamma density 

mixtures). 

 

Figure 2. Sojourn time density for the Vehicle inspection state. 

Table 2. The estimators of mixture of densities the Vehicle 

inspection state. 

Density 𝑗 𝑐𝑗 𝛼𝑗 𝛽𝑗 

Weibull 1 0.2370 34.2012 9.1430 

Weibull 2 0.7630 22.8309 10.1116 

log-normal 1 0.4611 2.2179 0.0407 

log-normal 2 0.5389 2.3165 0.0341 

gamma 1 0.4795 551.4824 0.0167 

gamma 2 0.5205 901.4588 0.0113 

The best result was obtained for the combination of two 

gamma densities (see: Tab.9). From table 2 we may conclude 
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that there are two hidden factors directly influencing  sojourn 

time in Vehicle inspection state. One factor has a share of 

47.95%  and can be identified as random variable with gamma 

distribution, for which the shape is equal to 551.4824 and the 

scale -  0.0167, the other  has share 52.05% and can be identified 

as random variable with gamma distribution with shape  

901.4588 and scale 0.0113. 

The reason may be the inclusion within this state of two 

types of maintenance, similar in terms of the scope of performed 

activities, i.e. periodic maintenance and technical inspection. 

These activities were carried out by various teams (technical 

inspection by the Police's own workshops and technical 

inspection by authorized diagnostic stations). The small number 

of observations related to the technical inspection, which takes 

place once a year or less, did not justify separating these 

observations). 

In the case of Stand-by state the kernel density estimator has 

3 peaks and the combination of 3 densities were fitted. The KDE 

and fitted parametric densities are shown on fig. 3 and the tab. 

3 shows the related coefficients an parameters for terms of fitted 

distribution mixtures.  

 

Figure 3. Sojourn time density for the Stand-by state. 

Table 3. The estimators of mixture of densities the Stand-by 

state. 

Density 𝑗 𝑐𝑗 𝛼𝑗 𝛽𝑗 

Weibull 1 0.1676 3.8317 5.6400 

Weibull 2 0.1619 13.3522 8.3281 

Weibull 3 0.6705 15.4904 10.6781 

log-normal 1 0.1442 1.6152 0.2551 

log-normal 2 0.3914 2.1862 0.1501 

log-normal 3 0.4644 2.3635 0.0541 

gamma 1 0.1217 20.7442 0.2336 

gamma 2 0.4257 38.4455 0.2329 

gamma 3 0.4526 348.5512 0.0305 

The best result for Stand-by state was obtained for the 

combination of three log-normal densities (see: Tab.9). From 

table 3 we  deduce that there are three hidden factors directly 

influencing sojourn time. One factor has a share of 14.42% and 

can be identified as random variable with log-normal 

distribution, for which the mean is equal to 1.6152 and the 

standard deviation -  0.2551, the other has  share 39.14% and 

can be described by random variable with log-normal 

distribution with mean 2.1862 and standard deviation 0.1501, 

the last one has share 46.44% and log-normal distribution with 

2.36352 and 0.0541 parameters. 

The KDE for Current repair state has 2 peaks. and the 

combination of 2 densities were fitted. As before, fig. 4 and the 

tab. 4 present the fitting results.  

 

Figure 4. Sojourn time density for the Current repair state. 

Table 4. The estimators of mixture of densities the Current 

repair state. 

Density 𝑗 𝑐𝑗 𝛼𝑗 𝛽𝑗 

Weibull 1 0.1251 5.9973 6.6996 

Weibull 2 0.8749 39.5768 10.3304 

log-normal 1 0.8594 2.3286 0.0268 

log-normal 2 0.1406 2.4877 0.0612 

gamma 1 0.8531 1404.8564 0.0073 

gamma 2 0.1469 216.9024 0.0554 

Here, the best result was obtain for the combination of two 

gamma densities (see: tab.9). From table 4 we may conclude 

that there are two hidden factors directly influencing  sojourn 

time in Current repair state. One factor has a share of 85.31% 

and can be identified as random variable with gamma 

distribution, for which the shape is equal to 1404.8564 and the 

scale -  0.0073, the other  has share 14.69% and can be identified 

as random variable with gamma distribution with shape  

216.9024 and scale 0.0554. 

This state is characterized by high variability resulting from 

sudden damage to the vehicle as a result of a breakdown, fault, 

or participation in a collision event, as a result of which the car 
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is unable to perform the task. 

For Daily maintenance 1 state the KDE has 3 peaks and the 

combination of 3 densities were fitted. fig. 5 and tab. 5 show 

fitted densities together with KDE and related coefficients and 

parameters respectively. Here, the best result was obtain for the 

combination of 3 gamma densities (see: tab.9). 

 

Figure 5. Sojourn time density for the Daily maintenance 1 

state. 

Table 5. The estimators of mixture of densities the Daily 

maintenance 1 state. 

Density 𝑗 𝑐𝑗 𝛼𝑗 𝛽𝑗 

Weibull 1 0.4535 6.2601 7.3247 

Weibull 2 0.3190 14.8275 6.9535 

Weibull 3 0.2274 20.4507 8.4650 

log-normal 1 0.3103 1.8346 0.1813 

log-normal 2 0.4721 1.9504 0.0843 

log-normal 3 0.2176 2.1334 0.0438 

gamma 1 0.3149 32.0103 0.1977 

gamma 2 0.4534 149.0389 0.0472 

gamma 3 0.2318 486.5975 0.0173 

For Daily maintenance 1 the best result was obtain for the 

combination of three gamma densities (see: tab.9). From table 

5 we may conclude that there are three hidden factors directly 

influencing sojourn time. One factor has a share of 31.49%  and 

can be identified as random variable with gamma distribution, 

for which the shape is equal to 32.0103 and the scale - 0.1977, 

the other  has share 45.34% and can be identified as random 

variable with gamma distribution with shape 149.0389 and scale 

0.0472, and the last factor has share 23.18%  where shape and 

scale parameters of gamma distribution are equal to  486.5975 

and 0.0173 respectively. 

Two distinct review peaks stem from the needs this activity 

generates. As a rule, it is the same check, however, in the event 

of deficiencies, correction is necessary. For example, daily 

maintenance includes checking the cleanliness of the vehicle 

and, if necessary, washing and cleaning it, checking and, if 

necessary, topping up the engine oil, or the condition of the 

coolant, brake fluid, windshield washer fluid, tire pressure, etc. 

The Daily maintenance 2 state is different: the KDE has 2 peaks. 

and the combination of 2 densities were fitted. Fig. 6 and the 

tab. 6 present the fitting results. 

 

Figure 6. Sojourn time density for the Daily maintenance 2 

state. 

Table 6. The estimators of mixture of densities the Daily 

maintenance 2 state. 

Density 𝑗 𝑐𝑗 𝛼𝑗 𝛽𝑗 

Weibull 1 0.0332 24.4102 5.6262 

Weibull 2 0.9668 9.5713 7.1644 

log-normal 1 0.1699 1.7959 0.1244 

log-normal 2 0.8301 1.9585 0.1082 

gamma 1 0.4115 53.6766 0.1149 

gamma 2 0.5885 145.3693 0.0497 

For Daily maintenance 2 the best result was obtain for the 

combination of two gamma densities (see: tab.9). From table 6 

we may conclude that there are two hidden factors directly 

influencing sojourn time. One factor has a share of 41.15%  and 

can be identified as random variable with gamma distribution, 

for which the shape is equal to 53.6766 and the scale -  0.1149, 

the other  has share 58.85% where shape and scale parameters 

of gamma distribution are equal to 145.3693 and 0.0497 

respectively. 

The scope of tasks performed as part of Daily maintenance 

2 usually focuses only on checking the technical condition, 

because correcting and supplementing activities were carried 

out during DM 1. Hence, one clear peak. 

The KDE for Deployment state has 4 peaks and the 

combination of 4 densities were fitted. As before, fig. 7 and the 
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tab. 7 present the fitting results. In the case of log-normal and 

gamma mixtures, the fitted mixture of densities have only 3 

terms (instead of 4, one of coefficients of convex combination 

was close to zero).  

 

Figure 7. Sojourn time density for the Deployment state. 

Table 7. The estimators of mixture of densities the Deployment 

state. 

Density 𝑗 𝑐𝑗 𝛼𝑗 𝛽𝑗 

Weibull 1 0.0793 11.7443 6.2013 

Weibull 2 0.2552 11.8686 9.5856 

Weibull 3 0.3026 73.2738 10.1303 

Weibull 4 0.3629 53.1521 10.5063 

log-normal 1 0.3865 2.2657 0.1242 

log-normal 2 0.4646 2.3170 0.0185 

log-normal 3 0.1489 2.3576 0.0105 

gamma 1 0.4263 70.8914 0.1386 

gamma 2 0.4508 3100.8107 0.0033 

gamma 3 0.1229 15071.1378 0.0007 

For Deployment state the best fitting was obtain for the 

combination of four Weibull densities (see: tab.9). From table 7 

we may conclude that there are four hidden factors directly 

influencing  to sojourn time. One factor has a share of 7.93%  

and can be identified as random variable with Weibull 

distribution, for which the shape is equal to 11.7443 and the 

scale -  6.2013, the second  has share 25.52% where shape and 

scale parameters of Weibull distribution are equal to  11.8686 

and 9.5856 respectively, the third  has share 30.26% where 

shape and scale parameters of Weibull distribution are equal to 

73.2738 and 10.1303 respectively, the last one has share 36.29% 

where shape and scale parameters of Weibull distribution are 

equal to  53.1521 and 10.5063 respectively.  

Hidden factors may reflect different types of tasks 

performed by Police patrols. The time distribution in this state 

is imposed by the shift work mode of the Police and in 

accordance with the Act of 6 April 1990 on the Police [1], the 

shift should be set in a way that allows a police officer to 

perform his official task within a 40-hour working week, which 

translates into an 8-hour service. In fact, officers often work in 

extended shifts, which is caused, among the others, by 

emergency calls. It should also be remembered that after the end 

of one shift, another begins, which results in 24-hour police 

work and continuous operation of vehicles. 

In the case of Refueling state, the KDE has 1 peaks and the 

pure Weibull, log-normal and gamma densities were fitted. The 

KDE and fitted parametric densities are shown on fig. 8 and the 

tab. 8 contains the related coefficients and parameters of fitted 

distributions.  

 

Figure 8. Sojourn time density for the Refueling state. 

Table 8. The estimators of mixture of densities the Refueling 

state. 

Density 𝑗 𝑐𝑗 𝛼𝑗 𝛽𝑗 

Weibull 1 1 25.0125 4.9683 

log-normal 1 1 1.5828 0.0465 

gamma 1 1 472.6240 0.0103 

For Refueling state the best result was obtain for the Weibull 

density (see: tab.9). The sojourn time for this state can be 

identified as random variable with Weibull distribution with the 

shape parameter 25.0125 and the scale parameter 4.9683. 

The refuelling time depends on the capacity of the fuel tank 

in the car and the efficiency of the dispenser at the petrol station, 

where the standard refuelling speed is 40 litres per minute. 

Short/quick refuelling, probably topping up the fuel tank, were 

more frequent, while longer refuelling in the case of an almost 

empty tank was less frequent, probably after long patrols or 

interventions. 
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The value of the objective function (Sum of Squared Errors) 

for the task (14) and the sample size for each of the states are 

given in the table below (tab. 9). 

Table 9. The number of observations and SSE for mixtures for 

the states. 

State n 
Weibull 

mixture 

log-normal 

mixture 

gamma 

mixture 

Vehicle inspection 12 0.1749 0.0471 0.0315 

Stand-by 891 0.0699 0.0181 0.0202 

Current repair 60 1.5214 0.2783 0.2648 

Daily maintenance 

1 
873 0.0158 0.0175 0.0158 

Daily maintenance 

2 
635 0.0767 0.3753 0.0627 

Deployment 1109 0.0443 0.3591 0.4486 

Refueling 255 4.2083 5.0563 11.3582 

For the Repair state we have two point distribution. Once the 

state was reached, the system moved on to the other state after 

57600 or 230400 sec (in logarithm scale 10.961 and 12.348). 

The sojourn time for this state is presented on fig. 9. 

 

Figure 9. Sojourn time density for the Repair state. 

The specificity of the repair status results from the repair 

possibilities and the availability of parts. The car was repaired 

immediately after finding the fault or waited for repair for  

a maximum of two days. Hence the two-point distribution of 

this state. 

Based on results presented in tab. 10 we estimate the 

stationary distribution {𝜋𝑖}1≤𝑖≤8 of Markov chain which 

satisfies the property (4). From (13) we determine densities for 

each state and choose such type of density for which the 

objective function of task (14) has the smallest value. Followed 

by we assess the expected sojourn time 𝐸𝜏𝑖 for each state, 1 ≤

𝑖 ≤ 8. From (10) we estimate the stationary distribution of semi-

Markov process {𝛱𝑖}1≤𝑖≤8. We present the results in tab. 11. 

Table 10. Stationary distribution of Markov chain, expected 

sojourn times in states, stationary distribution of semi-Markov 

process. 

The 𝛱𝑖  values obtained make it possible to evaluate the limit 

probability of the tested system in certain states. The highest 

value (33%) was obtained for the state of Deployment, which 

means that vehicles are used in 1/3 of the time. Another high 

indication was for the Stand-by state (25%), meaning a stoppage 

and waiting for a task. Both of these states are those in which 

vehicles are ready to perform tasks or are already performing 

them. The next in line indications concerned the mandatory 

daily service of vehicles and amounted to 19% and 13%, 

respectively. Although these are conditions related to the 

renewal of vehicles, they are rather related to checking the 

technical condition and inspection before departure, so it can 

also be considered that vehicles in these conditions are ready to 

perform the task. The probabilities of being in the other states 

classified as unready were relatively low and amounted to 

approximately 4% Refuelling, 2% Repair and Current repair, 

and only 0.4% Vehicle inspection, respectively. This allows to 

conclude that the tested system was in almost 92% of the state 

of readiness, of which, above all, it performed its tasks, which 

proves the good management of the owned infrastructure. The 

low rate of unreadiness, amounting to 8%, is satisfactory and 

allows to conclude about the high technical culture and properly 

implemented renewal treatments. 

4. Conclusion 

In the article a transport system identification was done using  

a semi-Markov model. The transition matrix between states was 

identified (the Markov property was verified). In addition,  

a stationary distribution was determined for the Markov chain. 

Identification of sojourn times in states has been done. The 

kernel density estimations of sojourn times in states clearly 

showed that it is not possible to approximate them using 

nr. State Distribution 𝜋𝑖 𝐸𝜏𝑖 𝛱𝑖 

1 Vehicle inspection gamma mixture 0.0031 9.7005 0.0036 

2 Stand-by log-normal mixture 0.2291 9.2155 0.2563 

3 Current repair gamma mixture 0.0154 10.5228 0.0197 

4 Daily maintenance 1 gamma mixture 0.2242 7.1364 0.1942 

5 Daily maintenance 2 gamma mixture 0.1631 6.7938 0.1345 

6 Deployment Weibull mixture 0.2849 9.6285 0.3329 

7 Refueling Weibull mixture 0.0655 4.8612 0.0386 

8 Repair two point 0.0147 11.2773 0.0201 
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classical theoretical distributions. The impossibility of the 

mentioned approximation is due to latent factors. Therefore, the 

kernel density estimations of sojourn times in states were 

approximated using a mixture of certain classical distributions: 

Weibull, log-normal and gamma. As the results showed, for 

different states the kernel density estimation had to be 

approximated by mixtures of different distributions. For one of 

the states, a two-point distribution was identified. The expected 

sojourn times were then determined for each of the states. The 

fitted parametric distributions in the form of mixtures allowed 

to determine the stationary distribution of the semi-Markov 

process.  

On the one hand the identification of stationary distribution 

of the semi-Markov process and on the other the estimation of 

distributions of the sojourn times in these states, enable to assess 

the readiness of the tested system more precisely. System 

readiness is defined as the total probability when the vehicle is 

in a state of immediate performance of the task (Deployment), 

but also in readiness to perform the task (Stand-by) and during 

vehicle being serviced (Daily Maintenance 1 and Daily 

Maintenance 2) directly required by the internal regulations of 

the Police. On the other hand, in the Refuelling, Repair, Current 

repair and Vehicle Inspection states, the vehicle is taken out of 

service, so these are non-ready states. 

An important achievement of the study presented is the 

ability to detect hidden factors using a mixture of distributions 

that are not possible to be captured when analysing the sojourn 

time using classical distributions. Hidden factors affect the 

reliability of technical systems, increase the uncertainty of 

maintenance and have a direct impact on the cost of maintaining 

the system. Detection of these factors enables more accurate 

system readiness modeling and optimization of system 

maintenance. 

Additionally the method of identification of sojourn time in 

states enables to simulate transportation systems because 

empirical distributions of sojourn times in states have been 

accurately approximated by mixtures of classical ones.  

The results obtained clearly show that the distribution of the 

sojourn time of objects in individual states is influenced by 

hidden factors. On this basis, it can be concluded that they 

correspond to hidden states, therefore, further research will be 

conducted towards modelling the maintenance system using the 

Hidden Markov Model, which allows to take into account the 

sojourn time in the hidden states.
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